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Abstract
The salient features of the real-space multigrid method and its recent applications are described.
This method is suitable for very large scale, massively parallel calculations of atomic and
electronic structure, as well as quantum molecular dynamics. Its nearly O(N) implementation
provides a compact, variationally optimized basis that is also very useful for fully O(N)
calculations of quantum transport. Recently, we also developed a hybrid method for simulating
biomolecules in solution, in which most of the solvent is inexpensively treated using an
approximate density-functional method, while the biomolecule and its first solvation shells are
described at the full Kohn–Sham level. Our calculations show excellent parallel efficiency and
scaling on massively parallel supercomputers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that ab initio methods have evolved
to a point where properties of materials can often be
successfully predicted based solely on their atomic structure
and without any experimental input. Conversely, if the atomic
structure is only approximately known from, e.g., atomic
force microscope imaging of the surface, the same methods
can be used to ‘optimize’ the structure and to predict the
precise atomic positions. Furthermore, theory can provide
a ‘theoretical microscope’, by identifying the origins of the
various properties of a given material and by uncovering
principles that can be used to systematically enhance the
desired characteristics, or to suppress the unwanted ones.

To apply ab initio methodology to systems with more
than a few tens of atoms, efficient implementation is essential.
Most ab initio implementations use plane-waves as a basis
for representing wavefunctions. While this approach has
been highly successful, achieving efficiency on massively
parallel supercomputers is difficult. This is mostly due to the
frequent use of Fourier transforms, which are global operations
requiring large amounts of interprocessor communication.
For modern massively parallel supercomputers with very fast
microprocessors, communication between distant processors
may become a bottleneck, limiting the parallelization
efficiency.

Our group has developed a multigrid-based method for
performing electronic structure calculations in real space [1].
Unlike the plane-wave approach, real-space methods are
inherently local, and therefore can be efficiently used on
parallel supercomputers. The multigrid iteration technique
is employed to improve the convergence rate of ground-state
wavefunctions. Our implementation enables the use of either
norm-conserving [2] or ultrasoft [3] pseudopotentials and our
tests show that systems with several thousands of atoms can be
treated efficiently.

The real-space method enables effective implementation
of O(N) techniques, which promise to reduce the asymptotic
O(N3) scaling of traditional electronic structure methods with
respect to the number of electrons or atoms [4]. The O(N)
method relies on the construction of a minimal set of localized
orbitals, variationally optimized for the system at hand. The
resulting compact basis is very useful for calculations of
quantum transport properties of nanoscale systems, where
expansion of various operators in a compact local basis is
needed [5–7].

The real-space approach can also be used for simulations
of biological systems. However, these simulations provide a
unique challenge for ab initio methods for several reasons.
First, the biological molecules are very large, often containing
many thousands of atoms. Second, solvent plays an
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important role in biosystems and thus it has to be included
in the calculations. Because including full solvation in ab
initio calculation is prohibitively expensive, simplified solvent
models are used. Often, the solvent is modeled implicitly,
as a polarizable continuum dielectric [8–10]. This approach
was successfully used [11–14] in many instances, but evidence
suggests that for a complete understanding of the behavior
of many biological systems an explicit treatment of solvent
is essential. For example, molecular mechanics simulations
of proteins have shown that an implicit representation of
solvent leads to incorrect predictions of native structures and
folding pathways, while explicit treatment yields results in
agreement with experimental observations [15, 16]. Also,
many biomolecules have water molecules near their active
sites, which are essential to their functions. To properly
describe these water molecules, hydrogen bonds with other
water molecules have to be included and this can only be done
with an explicit solvent model.

To address this, we have developed a method that includes
explicit full solvation at yet fully quantum level in ab initio
simulations at low computational cost. In our method,
solvent molecules are treated with a frozen-density orbital-free
(FDOF) DFT method, while the rest of the system, including
the biomolecule and its first solvation shells, is described at
the full ab initio level. This approach enables the inclusion of
thousands of explicit solvent molecules at the cost of about 1%
of the time required for the ab initio calculation on the rest of
the system.

2. Grid-based discretizations of the Kohn–Sham
equations

The standard Kohn–Sham energy functional is

Etot[{φi}, {RI }] =
∑

i

〈φi | − 1
2∇2 + VNL|φi〉

+ 1

2

∫ ∫
dr dr′ n(r)n(r′)

|r − r′| + Exc[n]

+
∫

dr V ion
loc (r)n(r)+ Eion({RI }), (1)

where φi are the wavefunctions, VNL is the non-local
pseudopotential, Exc provides the exchange–correlation
energy, V ion

loc represents the local part of pseudopotential and
Eion accounts for the energy of interaction between ions in the
system. In this expression, it is assumed that the Kleinman–
Bylander [2] norm-conserving pseudopotentials are used to
describe the ions. The Vanderbilt ultrasoft [3] pseudopotentials
require modifications to the computational procedure, these
will be discussed in section 3. The minimization of this
functional requires the solution of the Kohn–Sham equations

HKS[ψn] = − 1
2∇2ψn + Veffψn = εnψn . (2)

The differential operator in the Kohn–Sham equations is
approximated using a generalized eigenvalue form:

Hmehr[ψn] = 1
2 Amehr[ψn] + Bmehr[Veffψn] = εnBmehr[ψn],

(3)

where Amehr and Bmehr are the components of the Mehrstellen
discretization [17], which is based on Hermite’s generalization
of Taylor’s theorem. It uses a weighted sum of the
wavefunction and potential values to improve the accuracy of
the discretization of the entire differential equation, not just
the kinetic energy operator. In contrast to the central finite-
differencing method, this discretization uses near-neighbor
points along all directions, rather than just those along
the Cartesian directions, to improve the accuracy of the
discretization while reducing its range.

To efficiently solve equation (3), we have used multigrid
iteration techniques that accelerate convergence by employing
a sequence of grids of varying resolutions. The solution is
obtained on a grid fine enough to accurately represent the
pseudopotentials and the electronic wavefunctions. If the
solution error is expanded in a Fourier series, it may be shown
that iterations on any given grid level will quickly reduce
the components of the error with wavelengths comparable
to the grid spacing, but are ineffective in reducing the
components with wavelengths that are large relative to the
grid spacing [18, 19]. The solution is to treat the lower
frequency components on a sequence of auxiliary grids with
progressively larger grid spacings, where the remaining errors
appear as high frequency components. This procedure
provides excellent preconditioning for all length scales present
in a system and leads to very rapid convergence rates.
The operation count to converge one wavefunction with a
fixed potential is O(Ngrid), compared to O(Ngrid log Ngrid) for
FFT-based approaches [20]. A subspace diagonalization is
performed every few SCF steps (every 10–20 SCF steps is
generally adequate) in order to unmix eigenstates that may be
close in energy.

The computational effort in traditional electronic structure
calculations must ultimately scale as O(N3), where N is the
number of atoms. This is because the wavefunction of each
electron can in general extend over the whole material, and
therefore computing one wavefunction will take at least O(N)
operations. Since the number of electrons grows linearly with
the number of atoms, the computational effort must grow at
least as O(N2). Furthermore, the individual wavefunctions
must be orthogonal to each other and the orthogonalization
or diagonalization effort will ultimately dominate, since they
scale as O(N3).

A number of ingenious methods have been proposed for
evaluating the total energy in O(N) operations. These methods
usually make a localization approximation, which involves
either the use of a localized, Wannier-like basis [21–27] or a
neglect of off-diagonal elements of the density matrix ρ(r, r′)
for |r − r′| greater than an appropriate cutoff radius [28–33].
Real-space methods are inherently local, and therefore suitable
for imposing localization constraints on the basis functions
that span the subspace of the both occupied and unoccupied
orbitals.

Consider a trial basis of non-orthogonal normalized
functions, � = {φ1, . . . , φN } [34], that will be refined by
iterative updates, and at convergence will accurately describe
the true Kohn–Sham ground state of the system. The O(N)
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scaling in electronic structure part of the problem is achieved
by minimizing the total energy functional

E[{φi}N
i=1] = 2 Tr(H (φ)ρ̄(φ))

− 1

2

∫
ρ(r)ρ(r′)
|r − r′| dr dr′ −

∫
μxc(ρ)ρ(r) dr + Exc[ρ]

(4)

for a set of non-orthogonal orbitals {φi}N
i=1. Here ρ̄� is the

density matrix in the basis {φ} and the N × N matrix H (�)

is defined by H (�)
i j = 〈φi |Hφ j〉. The main advantage of

this formulation is that the shapes of the localized orbitals
are variationally optimized for a given atomic geometry. Full
DFT accuracy can thus be achieved with very few orbitals per
atom. The ‘price’ is significant delocalization of the optimized
orbitals (up to 8–10 au), but the small size of the matrix
equations is still a major advantage. In fact, it has been
shown [35] that the dual, non-orthogonal Wannier-like basis
is more localized than either an orthogonal Wannier basis or
a density-support basis, thus resulting in the smallest possible
number of non-zero overlaps.

The preconditioned steepest descent (PSD) direction in the
non-orthogonal basis can be evaluated by

δ� = K (��− H�) (5)

where � = S−1 H (�) and S, H� are the overlap and
Hamiltonian matrices. K is the multigrid preconditioning
operator, which substantially accelerates convergence.

In actual calculations, the basis functions � are corrected
at each iteration using the PSD directions (5) with Pulay
mixing. A new electronic density ρ(r) is then generated
according to

ρ(r) =
∑

j,k

ρ jkφ j(r)φk(r), (6)

as well as the new Hartree and exchange–correlation
potentials. In true O(N) calculations, the total energy
is minimized iteratively until self-consistency is achieved.
However, we often find that convergence can be accelerated
further diagonalizing the Hamiltonian matrix. Using a
highly parallel SCALAPACK solver, the diagonalization cost
represents only a modest fraction of the total cost per
iteration, while substantially reducing the number of iterations.
Diagonalization is also required when the system contains
partially occupied orbitals, or when unoccupied orbitals are
needed. The latter is the case for our quantum transport
calculations, which use this basis for the expansion of Green’s
functions and transfer matrices (see section 6).

3. Ultrasoft pseudopotentials

In Vanderbilt’s ultrasoft pseudopotential scheme, the electron
density consists of two parts: a soft contribution given by
the squared moduli of the wavefunctions φi , and a hard
contribution given by angular momentum projector functions
β I

n and augmentation functions QI
nm , which are localized at

ionic cores:

n(r) =
∑

i

[
|φi(r)|2 +

∑

nm,I

QI
nm(r)

× 〈φi (r)|β I
n(r)〉〈β I

m(r)|φi(r)〉
]
. (7)

Relaxation of norm-conservation in UPPs leads to the
generalized orthonormality condition

〈φi |S({RI })|φ j〉 = δi j , (8)

where the overlap operator S, which depends on ionic positions
{RI }, is defined by

S = 1 +
∑

nm,I

qnm|β I
n〉〈β I

m |, (9)

with

qnm =
∫

Qnm(r) dr. (10)

When norm-conserving pseudopotentials are used, the
wavefunctions, the charge density, and the various components
of the total potential are all represented on a single uniform
grid. The UPP charge density is hard around the ionic
cores, while the wavefunctions are much smoother. To
take advantage of these properties, our ultrasoft real-space
implementation [36] has to use two global grids: a fine one
for the charge density and the Qnm(r) functions, and a coarse
one for representing wavefunctions. The coarse wavefunction
grid also accelerates the solution of the Kohn–Sham equations,
which is usually the most time-consuming part of electronic
structure calculations. Furthermore, it decreases computer
memory requirements for storing wavefunctions, which is
often the limiting factor for systems with many electrons. The
fine and coarse grids are implemented in such a way that the
coarse grid is a subset of the fine grid. Our tests show that
using a fine grid with twice as many points in each direction as
the coarse grid is usually adequate.

In the calculations, one needs to transfer quantities known
on the fine grid to the coarse grid, and vice versa. Transferring
from the fine to the coarse grid is straightforward; since the
coarse grid is a subset of the fine one, it is sufficient to use
injection, i.e., use its already known values on the coarse-
grid points. However, the situation is more complicated when
transferring from the coarse grid to the fine one. This is
needed when calculating the electron density according to
equation (7), since the wavefunctions φi(r) are only known on
the coarse grid, while the electron density is represented on the
fine one. An interpolation scheme is therefore required, and
our tests show that it must be quite accurate. Since our RMG
implementation uses regular rectangular grids, an interpolation
in three dimensions can be obtained as a tensor product of
one-dimensional interpolations. Two types of interpolation
have been implemented: (i) a local cubic interpolation that
uses four points on a coarse grid to find fine-grid values
between the second and the third coarse-grid point, and (ii) a
spline interpolation, using B-splines functions [37]. The RMG
method can also employ non-orthogonal meshes. For example,
a hexagonal discretization of the Kohn–Sham equations was
described in [1].
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Figure 1. Performance data for a system of 819 water molecules on
Cray XT3. Points represent data from calculations, lines are guides
to an eye.

In Vanderbilt’s UPP scheme, it is often required to
perform inner products between the wavefunctions and the
non-local projectors, or their derivatives with respect to the
ionic positions. As mentioned above, the wavefunctions are
smooth, while the non-local projectors usually vary rapidly
in inside the core regions. To perform these inner products
accurately and efficiently, the double grid technique [38] is
used. In this technique, an inner product calculated on a grid
that is denser than the original coarse grid is evaluated on
the original grid with non-local projectors replaced by weight
factors, which depend on the interpolation used to obtain
values of wavefunctions on the denser grid.

Another important aspect of the real-space implementa-
tion of the UPPs is that since the spacing in the coarse grid
is generally much larger than the one used when utilizing
norm-conserving pseudopotentials (NCPPs), the fourth-order
Mehrstellen discretization used with NCPPs [1] for the Kohn–
Sham equations is not accurate enough when using UPPs.
Instead of the fourth-order expression, we use a sixth-order
Mehrstellen discretization, which samples the functions at
57 points.

4. Parallelization and scaling

Modern parallel supercomputers contain tens of thousands of
processors and are capable of running at hundreds of TFLOPS.
These numbers are expected to increase rapidly over the next
few years. To utilize these resources for simulations of
large systems, efficient parallelization over many processors
is essential. To test parallelization efficiency, performance
tests were run on two liquid water systems on the Cray
XT3 supercomputer using up to 4096 processors. The XT3
supercomputer consist of 2.6 GHz dual-core AMD Opteron
processors and 4 GB of memory per processor is available. The
processors can be used in single-core or dual-core modes. In
the dual-core mode, each core is utilized as an independent

Number of water molecules

T
im

e 
pe

r 
SC

F 
st

ep
 [

s]

Figure 2. Times per SCF step in RMG and PWscf calculations for
supercells of liquid water containing 64, 128, 256 and 512 molecules.
Circles represent calculations in which the ratio of 8 cores/molecule
was used, while the squares display calculations for the ratio of 1
core/molecule. The runs used a Cray XT3 supercomputer, consisting
of dual-core 2.6 GHz AMD Opteron processors, with 2 GB of
memory per core. We were not able to complete a PWscf run for 512
water molecules, hence this point is missing.

CPU using 2 GB memory, while in the single-core mode only
one of the cores is active, allowing it to use 4 GB of memory.

The performance data for a calculation on on a system
containing 819 water molecules are shown in the figure 1. The
single-core calculation shows slightly better performance than
the dual-core one. This is mainly due to the fact that in the dual-
core mode the cost of interprocess communication is higher;
our timings show that the time required for communication in
the dual-core mode is about 40% larger than the time in the
single-core node. The reason for this difference is sharing of
the interconnect by the cores on a processor: when both cores
use the same interconnect the communication is less efficient
than when each core has its dedicated interconnect. On the
new Cray XT4, our code performs about 20% faster than
on the XT3, due to improved speed of memory to processor
communications.

We have also made brief performance comparisons
between the RMG code and a well-parallelized plane-wave-
based code, PWscf [39]. While these tests were not extensive
and focused only on a single system, liquid water, they show
that both codes execute at comparable speed. This is not
surprising, as the real and reciprocal spaces are conjugate to
each other. The specific timings, shown in figure 2, were
carried out in supercells containing 64, 128, 256 and 512
water molecules. The number of processor cores was increased
with the number of molecules, so that the ratio of molecules
per core remained constant. All tests used the PBE [40, 41]
exchange–correlation, ultrasoft pseudopotentials and a kinetic
energy cutoff of 36 Ryd. The data show that with increasing
system size and number of cores the PWscf time per SCF
step increases quite steeply, presumably due to the cost of
Fourier transforms, while the RMG’s time increases linearly.
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At this time, the RMG code uses a simple, linear mixing
scheme, which needs more SCF steps for convergence than
the significantly more sophisticated algorithm used in PWscf.
We made no attempt to optimize the codes for the system
at hand, which would likely improve their performance for a
given processor range and system size.

5. Hybrid Kohn–Sham DFT/frozen-density
orbital-free DFT

In simulations on systems with biological relevance, it is
usually necessary to include solvent molecules. In a typical
biosimulation, the solvent molecules outnumber the solute
and make treatment of such systems with ab initio methods
prohibitively expensive. Therefore, there is great interest in
developing efficient solvent models that can be used in ab
initio calculations.

To this end, we developed [42] a simplified solvent model,
in which the solvent molecules are described with a frozen-
density orbital-free (FDOF) DFT method. These molecules are
assumed to have rigid geometries and frozen electron densities.
The energy is given as follows:

EFDOF[
] = TOF[
] + EH[
] + Exc[
]
+ EPPlocal[
] + EII (11)

where TOF stands for an orbital-free (OF) kinetic energy
(KE) functional, EH is the Hartree energy, Exc is the
exchange correlation energy, EPPlocal evaluates the energy of
interaction between the electrons and the local part of the
pseudopotentials, and finally EII denotes the interaction energy
between ions in the system. Any OF KE functional can be used
in the formula above, but we have found that the LLP [43]
functional is preferable in calculations on liquid water:

TLLP = CTF

∫

�


5/3

(
1 + 0.0045x2

1 + 0.0253x sinh−1 x

)
dr, (12)

where

x = 21/3 |∇
(r)|

4/3(r)

. (13)

Note that only the local part of the pseudopotential is
used in equation (11), the reason being that the non-local
part of the pseudopotential is applied to orbitals rather than
charge density. Neglecting the non-local contributions is
well justified, because the present model only deals with
intermolecular interactions (molecules are assumed to have
frozen geometries) and the short-range non-local effects are
negligible at typical intermolecular distances.

We chose to represent the charge density for each solvent
molecule by Gaussians centered on the ionic positions. For the
case of water the electron density of a molecule is described
as


H2O(r) = G(qO, αO,RO, r)+ G(qO, αO,RH1, r)

+ G(qO, αO,RH2, r), (14)

where G is a Gaussian function centered at the atomic position
R

G(q, α,R, r) = q
(α
π

) 3
2

exp
(−α |r − R|2) . (15)
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Figure 3. Radial distribution functions calculated using the
frozen-density method (solid lines) for a system of 432 water
molecules at 300 K. In each simulation, 10 000 molecular dynamics
steps with a time step of 50 au were performed. The RDFs were
calculated every 5 steps and averaged over the entire run.
Experimental results [50] are also shown (dashed lines). For better
comparison, intramolecular features in H–H and O–H plots were
removed from the experimental data.

To perform calculations for liquid water, four parameters have
to be determined: the charges on the oxygen and the hydrogens
(qO and qH) and the Gaussian widths (αO and αH). The total
molecular charge and dipole moment can be used on find those
parameters. When using pseudopotentials, the total charge of
a water molecule is 8 and therefore

qO + 2 ∗ qH = 8. (16)

The values of a dipole moment of a water molecule in a liquid
phase range from 2.6 to 3.15 D [44–47]. In this work, a value
of 3.0 D is used, which is close to the value of 2.95 D obtained
from KS DFT studies [48, 49]. To obtain the correct molecular
dipole moment the atomic charges have to be qO = 7.05 and
qH = 0.475 electrons.

Gaussian width are adjusted by performing molecular
dynamics simulations and matching the resulting radial
distribution functions (RDFs) to experimental data. The values
of αO = 0.75 and αH = 0.8 reproduce the experimental RDFs
best. The obtained RDFs and their comparison to experimental
results are shown in figure 3.

To define a hybrid calculation scheme combining the
frozen-density, orbital-free method with the Kohn–Sham
method, consider a system that contains two types of atoms:
those that are treated with the FDOF method (FDOF atoms)

5
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and those that are treated with KS DFT method (KS atoms).
The FDOF atoms have fixed charge density, 
FDOF(r), attached
to them, while the charge density corresponding to the KS
atoms, 
KS(r), minimizes the energy functional for the hybrid
system. The total charge density of the entire system is simply
the sum of both densities


tot = 
FDOF + 
KS. (17)

Since the Hartree and exchange–correlation energies are
explicit functions of the charge density, it is straightforward to
calculate these quantities for the hybrid system using 
tot. The
atom–atom interaction energy is also straightforward, being the
sum over all atoms present in the hybrid system, regardless of
their type. As for as the pseudopotential energy, the local and
non-local parts are treated differently: each atom has a local
potential associated with it and it acts on the total density 
tot,
while only the KS atoms have non-local potentials associated
with them and these only act on the KS orbitals.

Defining KE of the hybrid system is somewhat more
complicated. Taking the sum of the FDOF and KS KEs is not
sufficient, since kinetic energies are non-additive. The non-
additive part of KE can be estimated [51] as

Tnadd[
FDOF, 
KS] = TOF[
tot]−TOF[
FDOF]−TOF[
KS]. (18)

This gives the following functional for the total electron
energy of a hybrid system:

EHybrid[
FDOF, 
KS, {Ri }FDOF, {Ri }KS]
= TTF[
TF] + TKS[
KS] + Tnadd[
FDOF, 
KS]

+ EH[
tot] + Exc[
tot] + EPPnonloc [
KS, {Ri }KS]
+ EPPloc [
tot, {Ri}] + EII[{Ri}] (19)

here {Ri} denotes all atoms in the system and {Ri}KS stands
for atoms treated by the KS DFT. Note that in this functional

FDOF is rigidly tied to the positions of FDOF atoms, while 
KS

is determined by minimizing the energy functional above.
An important feature of our method is that it allows for

for the flow of molecules across the interface between the
regions treated by the different methods. Being able to deal
with a change in the number of KS atoms is important, since
in dynamical calculations the number of solvent molecules
in first solvation shells or within the KS atomic cell can
change. It is also possible that a solvent molecule originally
treated by the KS method moves out of the KS atomic cell.
Such molecule cannot be treated by the KS DFT anymore,
since it is required that all KS atoms are inside the KS
atomic cell, and the number of KS atoms has to be decreased.
When such an event occurs, the KS/FDOF simulation can
readily continue, since the total electron energy in KS/FDOF
system (equation (19)) can be calculated for any number of
KS and FDOF molecules. However, the exchange causes
discontinuities in the total electron energy, due to the fact
that the electron energy of a solvent molecule is different
when calculated with KS or FDOF methods. Nevertheless,
these discontinuities can be simply removed by subtracting
differences in total energy before and after each exchange. This
procedure yields essentially constant total energy and smooth
kinetic energy curves as a function of simulation time.

Figure 4. The relaxed structure of Cu2+ bound to a fragment of PrP
protein. The copper ion is shown as a sphere and the binding atoms
are labeled N1, N2, N3 (nitrogen) and O (oxygen).

The hybrid method was already used to study copper
ion binding to prion protein, PrP, which is responsible for
infectious neurodegenerative diseases such as the mad cow
disease or the Creutzfeldt–Jakob disease. Experimental studies
have determined that the fundamental copper binding site
consists of aminoacids HGGGW [52]. In our simulation
the PrP is modeled as a fragment consisting of these five
aminoacids. It is solvated in a cubic box with 3101 water
molecules. The water molecules closer than 6 Å to the copper
ion are treated by KS DFT, which adds 12 water molecules
to the KS subsystem, so that the total number of KS atoms
is 108. The obtained relaxed structure is shown in figure 4.
The calculated binding site geometry is quite similar to that
obtained in [53]. The Cu–N bonds differ only by few hundreds
of angstroms, while the Cu–O bond is 2.35 Å instead of 2.09 Å.
Significant part of this difference appears to be due to the
different treatment of solvent in [53], where only the first
solvation shell was explicit and the rest of the solvent was
modeled implicitly. In our calculation two water molecules
are found in contact with the copper ion, which are stabilized
by hydrogen bonding with other water molecules present in the
system. No water molecules close to the copper are reported
in [53]. When the calculation is performed without the water
molecules in contact with copper, the difference in Cu–O bond
distance decreases by more than a half to only 0.11 Å, while
other bonds involving copper stay almost unchanged.

Other recent applications of the hybrid method include
studies of multiple histidine coordination of Cu in prion
proteins [54] and of Cu binding to the protein precursor of
non-amyloid-beta component of Alzheimer disease amyloid
plaque [55].

6. Quantum transport calculations

In evaluating quantum transport of electrons across a nanoscale
constriction or device, one needs to consider open boundary
conditions for the wavefunctions, since the nanodevice is
part of a macroscopic circuit and is thus connected to leads
that appear infinite on the quantum scale. The appropriate
quantum-mechanical formulation needs to incorporate the
scattering of the electrons using either the Lippmann–
Schwinger or the Green’s function equations [5, 56]. In

6
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Figure 5. Schematic view of the Au(111)-Fc-C5S-Au(111) junction.
Semi-infinite Au(111) on left side represents the substrate, while that
on right side represents the STM tip. d is the distance between the tip
and the molecule.

order to include atomistic details of the infinite leads in either
approach, it is convenient to use LCAO-type basis sets, whose
finite range enables the calculation of the Green’s functions or
scattering matrices through matrix operations. The important
advantage of our optimized-orbital method is the small number
of orbitals per atom (e.g., 4 per Si atom), which leads to very
small matrices. Furthermore, the various contributions to the
Green’s function and the transmission are evaluated in a layer-
by-layer fashion, taking advantage of the localization of the
basis and the small number of optimized orbitals per atom that
are needed for full DFT accuracy. The infinite leads and the
‘conductor’ (device) region are split into layers that interact
only with their nearest neighbors, leading to exact O(N)
scaling of the quantum transport part [6]. Due to the efficient
expansion of Hamiltonian and Green’s function matrices, the
dimensions of the relevant matrices are minimized and we
can perform fully ab initio, non-equilibrium calculations of
quantum transport for large systems [7, 57].

The quantum transport calculations are carried out using
the non-equilibrium Green’s function (NEGF) method [58, 59]
in a basis of optimally localized orbitals [34, 6]. Both the
leads and the conductor parts are treated at the state-of-the-art
density-functional theory level.

In the NEGF SCF calculations, the density matrix ρi j is
calculated by

ρi j = 1

π

∫ ∞

−∞
dε{[G(ε)�L(ε)G

†(ε)]i j f (ε − μL)

+ [G(ε)�R(ε)G
†(ε)]i j f (ε − μR)} (20)

with complex energy contour integration. The charge density
is calculated according to equation (6).

The Hartree potential is obtained by solving the Poisson
equation with boundary conditions corresponding to each bias,
i.e., the potential in the conductor region is self-consistently
matched on each side with the chemical potentials of the leads.
Finally, the transmission coefficients are calculated from

T (E, V ) = 2e2

h
Tr[�L(E)G

+
C (E)�R(E)G

−
C (E)], (21)

where �L,R and G±
C are the coupling functions for the left and

right leads and the retarded and advanced Green’s functions
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Figure 6. Current–voltage characteristics of the
Au(111)-SC5-Fc-Au(111) junction as a function of the
STM-molecule distance.

of the conductor part, respectively. The current through the
molecular junction is given by

I (V ) =
∫ ∞

−∞
T (E, V )[ f (E − μL)− f (E − μR)] dE, (22)

where f is the Fermi–Dirac distribution and μL,R are the
chemical potentials of the left and right leads, with μL −μR =
V being the effective applied bias.

Figure 5 shows the structure of ferrocenyl-alkanethiolate
adsorbed on the Au(111) surface in a geometry-optimized
atomic configuration. The Au(111) surface on the right side
is used to represent the STM tip. Figure 6 shows the calculated
I –V curves for positive bias at distances of 2.01, 3.39 and
4.34 Å, respectively. Their overall shapes are similar and
the NDR positions are at about same biases. However, the
absolute value of the current decreases exponentially with an
increase of the distance. For example, at the bias of 0.6 V,
we can fit the current by I (d) = I0e−βd with the decay
constant β = 0.90. The distance also affects the shape of
the NDR region, or its ‘strength.’ Specifically, the NDR at
1.2 V is enhanced with increasing d . This indicates that a
low current setpoint in the STM experiment is important for
the observation of NDR at large biases. However, an increase
of the distance has the opposite effect on NDR at low bias;
the peak at 0.2 V is attenuated with increasing d . This result
can explain why the low bias NDR is not seen in the STM
experiment [60], because a high current setpoint would be
needed for its observation. This ‘NDR tuning’ effect can be
utilized in the design of molecular devices, for example by
introducing spacer layers, which would adjust the strength
of the NDR and of the switching current for optimal device
performance.

Our other recent applications include a study of thiol
and amine end group functionalization in alkane chains on
gold [61] and of tunable NDR effects in porphyrin molecules
sandwiched between doped Si leads [62].
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7. Summary

We have briefly reviewed the salient features and recent
applications of the real-space multigrid (RMG) method. This
method is by now well established and has been applied to a
large number of systems. It is fully parallelizable and scalable.
The multigrid techniques provide convergence acceleration at
all length scales, which is particularly useful for ‘difficult’ or
large systems. Our codes, which have been especially adapted
for massively parallel supercomputers, scale very well on the
parallel platforms that we have access to, including the Cray
XT3, XT4 and IBM Power 4/5 systems. The grid description is
also very advantageous for applying O(N) techniques without
significant loss of accuracy. Indeed, it is possible to reach full
DFT accuracy while essentially preserving the linear scaling
and reasonable computing cost. Furthermore, the variationally
optimized localized basis for O(N) calculations is very suitable
for quantum transport calculations, since it minimizes the basis
set size needed to represent the various operators that are
needed to obtain the electron transmission. For simulation of
biomolecules in solution, it is possible to introduce a hybrid
method where the biomolecule and the neighboring solvent
shells are treated by full DFT, while the rest of the solvent is
described by an approximate frozen-density orbital-free DFT
method. The inclusion of the solvent into the RMG method is
very cheap and O(N), enabling calculations with over 100 000
solvent molecules at minimal cost.
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